Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type 1 gene mutations.
نویسندگان
چکیده
OBJECTIVES To establish the consistency of the previously reported pattern of muscle involvement in a large cohort of patients with molecularly defined ryanodine receptor type 1 (RYR1)-related myopathies, to identify possible additional patterns, and to compare magnetic resonance imaging (MRI) findings with clinical and genetic findings. DESIGN Blinded analysis of muscle MRI patterns of patients with congenital myopathies with dominant or recessive RYR1 mutations and control patients without RYR1 mutations. We compared MRI findings with the previously reported pattern of muscle involvement. SETTING Data from 3 tertiary referral centers. PATIENTS Thirty-seven patients with dominant or recessive RYR1 mutations and 23 controls with other myopathies. MAIN OUTCOME MEASURES Each MRI was classified as typical if it was identical to the reported pattern, consistent if it was similar to the reported one but with some additional features, or different. Images with no or few changes were classified as uninformative. RESULTS Twenty-one of 37 patients with RYR1 mutations had a typical pattern; 13 had a consistent pattern. Two patients had uninformative MRIs and only 1 had a different pattern. Compared with patients with dominant mutations, patients with recessive mutations and ophthalmoparesis had a more diffuse pattern, classified as consistent in 6 of 8. In contrast, 10 of 11 with recessive mutations but without ophthalmoparesis had a typical pattern. All MRIs of 23 control patients were classified as different. CONCLUSIONS Our results suggest that muscle MRI is a powerful predictor of RYR1 involvement in patients with a congenital myopathy, especially if they carry a dominant mutation or recessive mutations without ophthalmoparesis.
منابع مشابه
Core myopathies and malignant hyperthermia susceptibility: a review.
The core myopathies are a subset of myopathies that present in infancy with hypotonia and muscle weakness. They were formerly considered a rare type of congenital myopathy but are now recognized as being more prevalent. Due to their genetic linkage to mutations in the ryanodine receptor gene (RYR1), core myopathies (in particular, central core disease) carry a high risk of malignant hyperthermi...
متن کاملEpigenetic changes as a common trigger of muscle weakness in congenital myopathies.
Congenital myopathies are genetically and clinically heterogeneous conditions causing severe muscle weakness, and mutations in the ryanodine receptor gene (RYR1) represent the most frequent cause of these conditions. A common feature of diseases caused by recessive RYR1 mutations is a decrease of ryanodine receptor 1 protein content in muscle. The aim of the present investigation was to gain me...
متن کاملCongenital myopathies and congenital muscular dystrophies.
Congenital myopathies and congenital myopathic dystrophies are distinct groups of inherited diseases of muscle, genetically heterogeneous, that manifest in early life or infancy. Congenital myopathic dystrophy is characterized by a dystrophic pattern, whereas no necrotic or degenerative changes are present in congenital myopathies. Much progress has been made in recent years in clarifying the c...
متن کاملRyanodine myopathies without central cores--clinical, histopathologic, and genetic description of three cases.
BACKGROUND Mutations in ryanodine receptor 1 gene (RYR1) are frequent causes of myopathies. They classically present with central core disease; however, clinical variability and histopathologic overlap are being increasingly recognized. PATIENTS Patient 1 is a 15-year-old girl with mild proximal, four-limb weakness from age 5, presenting with a progressive scoliosis starting at age 10. Patien...
متن کاملRYR1-Related Myopathies and Anesthesiological Implications
The skeletal muscle sarcoplasmic reticulum calcium release channel, commonly known as ryanodine receptor type 1 (RyR1), is encoded by the RYR1 gene and specifically interacts with the voltage-dependent Ca2+-channel Cav1.1, localized at T-tubular membrane. The depolarization of the plasma membrane results in conformational changes in Cav1.1, which are transmitted directly to the RyR1 channel, ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of neurology
دوره 68 9 شماره
صفحات -
تاریخ انتشار 2011